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Abstract
Recent proton spin–lattice relaxation-time (T1) measurements on the
ferrimagnetic chain compound NiCu(C7H6N2O6)(H2O)3·2H2O are explained
by an elaborately modified spin-wave theory. We give strong evidence of the
major contribution to 1/T1 being made by the three-magnon scattering rather
than the Raman scattering.

Low-frequency spin dynamics in magnetic systems is a long-standing problem and has
recently attracted renewed interest due to the significant progress in designing low-dimensional
materials such as chains and ladders. Nuclear magnetic resonance (NMR) is a powerful
probe of their dynamic properties. The nuclear spin–lattice relaxation time T1 is in particular
eloquent of the collective motions of electronic spins and therefore we take a great interest
in microscopically interpreting it. The spin-wave formalism has played a crucial role in this
context. Van Kranendonk, Bloom [1], and Moriya [2] made their pioneering attempts to
describe 1/T1 in terms of spin waves. Oguchi and Keffer [3] further developed the spin-wave
analysis considering the three-magnon nuclear relaxation mechanism as well as the Raman
one, whereas Pincus and Beeman [4] claimed that the three-magnon process was considerably
underestimated in their argument, revealing further the relaxation mechanism.

The spin-wave excitation energy is usually much larger than the nuclear resonance
frequency and thus the single-magnon relaxation process is rarely of significance. The
Raman process consequently plays a leading role in the nuclear spin–lattice relaxation.
Because of the (4S)−1-damping factor to the Holstein–Primakoff magnon series expansion,
the multi-magnon scattering is much less contributive within the first-order mechanism,
where a nuclear spin directly interacts with spin waves through the hyperfine coupling.
However, the second-order mechanism, where a nuclear spin flip induces virtual spin waves
which are then scattered thermally via the four-magnon exchange interaction, may generally
enhance the relaxation rate. The Pincus–Beeman spin-wave nuclear relaxation theory is
thus fascinating but works only far below the three-dimensional transition temperature. The
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conventional spin-wave theory applied to low-dimensional magnets ends in failure with
diverging magnetizations. In such circumstances, Takahashi [5] gave a fine description of
the low-dimensional ferromagnetic thermodynamics at low temperatures in terms of modified
spin waves. His idea of introducing a constraint on the magnetization was developed for
antiferromagnets [6, 7] and ferrimagnets [8, 9]. Random-bond ferromagnets [10] and frustrated
antiferromagnets [11–13] were also discussed within this renewed spin-wave scheme.

The ferrimagnetic modified spin-wave theory is particularly powerful to investigate both
static [14, 15] and dynamic [16, 17] properties. One-dimensional ferrimagnets have lately
attracted much attention especially in the context of designing molecule-based ferromagnets
[18]. A series of bimetallic chain compounds [19] are typical examples and some of them were
indeed assembled into a ferromagnetic lattice. Another approach [20] consists of bringing into
interaction metal ions and stable organic radicals. Homometallic systems can exhibit distinct
ferrimagnetism of topological origin [21, 22]. Such synthetic endeavours have stimulated
several experimentalists [23, 24] to measure T1 on ferrimagnetic chain compounds. Thus
motivated, here we make a systematic spin-wave analysis of the nuclear spin dynamics in one-
dimensional Heisenberg ferrimagnets,which has been pending for the past decades without any
suitable spin-wave scheme. Our goal is to show strong evidence of the proton spin relaxation
in the title compound being mediated by the three-magnon scattering rather than the Raman
scattering.

First of all, our scheme [8] of modifying the spin-wave theory is distinct from the
original idea proposed by Takahashi [6] and Hirsch et al [7]. Their way of suppressing
the divergent sublattice magnetizations consists of diagonalizing an effective Hamiltonian
with a Lagrange multiplier included subject to zero staggered magnetization. The thus-
obtained energy spectrum necessarily depends on temperature and fails to reproduce the
Schottky peak of the specific heat [25]. In order to obtain better thermodynamics, we first
diagonalize the Hamiltonian keeping the dispersion relations free from temperature and then
introduce a Lagrange multiplier in order to minimize the free energy subject to zero staggered
magnetization. This scheme is highly successful in describing the magnetic susceptibility as
well as the specific heat [25] and therefore guarantees our exploration of the one-dimensional
ferrimagnetic dynamics over a wide temperature range.

We consider ferrimagnetic Heisenberg chains of alternating spins S and s, as described
by the Hamiltonian

H =
N∑

n=1

[
JSn · (sn−1 + sn) − (gS Sz

n + gssz
n)µB H

]
. (1)

Introducing bosonic operators for the spin deviation in each sublattice via S+
i = (2S −

a†
−:i a−:i)

1/2a−:i , Sz
i = S − a†

−:i a−:i , s+
i = a†

+:i(2s − a†
+:i a+:i)

1/2, sz
i = −s + a†

+:i a+:i ,
and assuming that O(S) = O(s), we expand the Hamiltonian with respect to 1/S as
H = H2+H1+H0+O(S−1), whereHi contains the O(Si) terms. H2 ≡ −2Ss J N is the classical
ground-state energy, while H1 describes linear spin-wave excitations and is diagonalized in
the momentum space as

H1 = −(S + s)J N − [
gS(S + 1

2 ) − gs(s + 1
2 )

]
µB H N

+ (gS − gs)µB H
∑

k

S + s + (gS − gs)µB H/2J

2ωk

+ J
∑

k

ωk + J
∑

k

∑

σ=±
ωσ

k α
†
σ :kασ :k, (2)

where α
†
σ :k ≡ a†

σ :k cosh θk + a−σ :k sinh θk , provided tanh 2θk = 2
√

Ss cos(k/2)/[S + s +
(gS − gs)µB H/2J ], creates a spin wave of ferromagnetic (σ = −) or antiferromagnetic
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(σ = +) aspect [26], whose energy is given by ωσ
k = ωk + σ [S − s − (gS + gs)µB H/2J ] with

ωk ≡ {[S +s +(gS −gs)µB H/2J ]2 −4Ss cos2(k/2)}1/2. Minimizing the free energy under the
condition of zero staggered magnetization [16], we obtain the optimum distribution functions
n̄σ

k ≡ 〈α†
σ :kασ :k〉.

The hyperfine interaction is generally expressed as

Hhf = gSµBh̄γN I +
∑

n

(
1
2 A−

n S−
n + Az

n Sz
n

)
+ gsµBh̄γN I +

∑

n

(
1
2 B−

n s−
n + Bz

nsz
n

)
, (3)

where Aσ
n (Bσ

n ) is the dipolar coupling tensor between the nuclear and nth larger (smaller)
electronic spins. Since H0 and Hhf are both much smaller than H1, they act as perturbative
interactions to the linear spin-wave system. If we consider up to the second-order perturbation
with respect to V ≡ H0 + Hhf , the probability of a nuclear spin being scattered from the state
of I z = m to that of I z = m + 1 is given by

W = 2π

h̄

∑

f

∣∣∣∣∣〈 f |V +
∑

m( �=i)

V |m〉〈m|V
Ei − Em

|i〉
∣∣∣∣∣

2

δ(Ei − E f ), (4)

where i and f designate the initial and final states of the unperturbed electronic–nuclear spin
system. Then we find that T1 = (I − m)(I + m + 1)/2W . Equation (4) contains various
relaxation processes but their explicit formulae will be presented elsewhere. We instead
diagrammatically show them in figure 1. Due to the considerable difference between the
nuclear and electronic energy scales, h̄ωN � J , the direct process, involving a single spin
wave, is rarely of significance. Considering further that the antiferromagnetic spin waves are
higher in energy than the ferromagnetic ones, ω−

k < ω+
k , at moderate fields, the intraband

spin-wave scattering dominates the Raman relaxation rate 1/T (2)

1 , whereas both the intraband
and interband spin-wave scatterings contribute to the three-magnon relaxation rate 1/T (3)

1 .
Within the first-order mechanism, 1/T (3)

1 is much smaller than 1/T (2)

1 [3]. However, the
first-order relaxation rate is generally enhanced through the second-order mechanism. We
consider the leading second-order process, that is, the exchange-scattering-induced three-
magnon relaxation, as well as the first-order process. The second-order single-magnon and
Raman processes, containing three and two virtual magnons, respectively, are much more
accidental due to the momentum conservation and much less contributive due to the (4S)−1-
damping factor in the Holstein–Primakoff magnon series expansion.

We calculate the case of (S, s) = (1, 1
2 ), which is relevant to several major

materials [20, 22, 27], assuming that the Fourier components of the coupling constants have
little momentum dependence [24] as

∑
n eikn Aτ

n ≡ Aτ
k � Aτ and

∑
n eikn Bτ

n ≡ Bτ
k � Bτ

(τ = −, z). Figure 2 shows 1/T1 as a function of temperature and an applied field. The
exchange-scattering-enhanced three-magnon relaxation rate generally grows into a major
contribution to 1/T1 with increasing temperature and decreasing field. As temperature
increases, n̄−

k decreases at k � 0 but otherwise increases [28]. In one dimension, excitations
at k � 0 predominate in the Raman process, while all the excitations are effective in the
three-magnon process. 1/T (2)

1 and 1/T (3)

1 are hence decreasing and increasing functions of
temperature, respectively, unless temperature is so high as to activate the antiferromagnetic
spin waves. The field dependences of 1/T (2)

1 and 1/T (3)

1 are also in striking contrast. At
moderately low temperatures and weak fields, h̄ωN � kBT � J , we find that 1/T (2)

1 ∝
e−(gS +gs )µB H/2kB T K0(h̄ωN/2kBT ), where K0 is the modified Bessel function of the second kind
and behaves as K0(h̄ωN/2kBT ) � 0.809 08 − ln(h̄ωN/kBT ). Thus the field dependence of
1/T (2)

1 is initially logarithmic and then turns exponential with increasing field. Equation (4)
claims that 1/T (3)

1 is much less analysable but should exhibit much stronger power-law
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Figure 1. Diagrammatic representation of various nuclear spin–lattice relaxation processes. Solid
arrows, designating spin waves which are emitted in the first-order processes, induce a nuclear
spin flip (×) via the hyperfine interaction, while broken arrows, depicting four-magnon exchange
correlations, thermally scatter the first-order spin waves as virtual excitations, where spin waves
of ferromagnetic and antiferromagnetic aspect are distinguishably drawn by straight and wavy
arrows, respectively. (a) The first-order direct (single-magnon) relaxation processes; (b) the first-
order Raman (two-magnon) relaxation processes; (c) the first-order and second-order three-magnon
relaxation processes, where q = −k4 ≡ k1 − k2 − k3, are related to each other through nonlinear
equations and are therefore inseparable. Considering the nuclear–electronic energy conservation,
processes in solid and dotted frames are of great and little significance, respectively, whereas those
in broken frames are relevant according to the constituent spins S and s.

diverging behaviour with decreasing field. Therefore, the three-magnon relaxation process
predominates over the Raman one at weak fields.

In figure 3 we plot the crossover points on which 1/T (2)

1 = 1/T (3)

1 . A Raman-to-three-
magnon crossover may generally be detected with increasing temperature and decreasing
field. The ferrimagnetic nuclear spin–lattice relaxation is sensitive to another adjustable
parameter Aτ /Bτ , that is, the location of the probe nuclei. At the special location of
Aτ /Bτ ∼ (ds/dS)

3 � (S/s)σ , where dS (ds) is the distance between the nuclear and
larger (smaller) electronic spins, the σ excitation mode hardly mediates the nuclear spin
relaxation [28]. For (S, s) = (1, 1

2 ), the lower-lying ferromagnetic spin waves are almost
invisible to the nuclear spin located as Aτ /Bτ � 1/2 and therefore its relaxation rate stays
extremely small. Any T1 measurements should be performed away from such magic points.

We are further excited to compare our theory with recent experimental findings. Fujiwara
and Hagiwara [24] measured T1 for proton nuclei in the bimetallic chain compound
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Figure 2. Modified spin-wave calculations of typical temperature (the left three) and field (the right
three) dependences of the nuclear spin–lattice relaxation rate, where gS = gs ≡ g, Aτ /Bτ = 1,
and (B−/Bz)2 = 4. 1/T (2)

1 and 1/T (3)
1 are plotted by dotted and broken curves, respectively,

while 1/T (2)
1 + 1/T (3)

1 ≡ 1/T1, which is observable, by solid curves.
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Figure 3. The crossover point as a function of temperature and an applied field, where gS = gs

and (B−/Bz)2 = 4.

NiCu(C7H6N2O6)(H2O)3·2H2O [27] comprising ferrimagnetic chains with alternating
octahedral Ni2+ and square-pyramidal Cu2+ ions. The measured susceptibility [29] suggests
that J/kB � 121 K, gS = 2.22, and gs = 2.09. Comparative measurements on the D2O-
substituted samples [24] indicate that protons relevant to the T1 findings are located in close
vicinity to Cu spins. Then, considering that the dipolar coupling strength is in proportion to
the inverse cubic distance, we may set the coupling constants for Aτ /Bτ = 0. Conditioning
further that Bz = 1.37 × 1020 T2 J−1 and (B−/Bz)2 = 5, which can be consistent with the
crystalline structure [27], we plot calculations together with the observations in figure 4. The
ferromagnetic and antiferromagnetic spin waves contribute different temperature dependences
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Figure 4. Proton spin relaxation-time measurements on NiCu(C7H6N2O6)(H2O)3·2H2O [24]
compared with our theory. (a) 1/T1 as a function of temperature at various values of an applied
field; (b) 1/T1 as a function of an applied field at 280 K, where 1/T (2)

1 and 1/T (3)
1 are also plotted

by dotted and broken curves, respectively.

to 1/T1 and give the decreasing and then increasing behaviour in figure 4(a). Considering that
there may be larger uncertainty in the experimental findings for 1/T1 at lower temperatures
and weaker fields [24], the theoretical and experimental findings are in good agreement and
the slight discrepancy between them may be attributable, for instance, to weak momentum
dependence of Bτ

k and the protons of wide distribution. Figure 4(b) more impressively
demonstrates the relevance of the three-magnon scattering to the proton spin relaxation. The
strong field dependence can never be explained by the Raman process. Since 1/T (3)

1 within
the first-order mechanism stays much smaller than the observations, the exchange-scattering-
induced three-magnon process is essential in interpreting such accelerated relaxation. We
are eager to have reliable observations at lower temperatures and weaker fields. We call for
more extensive NMR measurements using as probes 1H, 63Cu, and 55Mn nuclei on the family
material MnCu(C7H6N2O6)(H2O)3·2H2O [27] as well as that of present interest.

There exist pioneering T1 measurements on the layered ferromagnet CrCl3 [30] and the
coupled-chain antiferromagnet CsMnCl3·2H2O [31], which give evidence of the relevant
three-magnon scattering. However, they are both, in some sense, classical findings under
the existing three-dimensional long-range order. Without any reliable spin-wave formulation
in one dimension, no author has explored quantum ferrimagnetic dynamics with particular
interest in multi-magnon scattering beyond the Raman mechanism. The present calculation
is the first evidence of the three-magnon scattering dominating the one-dimensional nuclear
spin relaxation and motivates extensive T1 measurements on various one-dimensionalquantum
ferrimagnets.
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